
Contemplate
T H I N K I N G A B O U T S O F T W A R E

ThreadSafe Command Line Interface
User Guide

December 9, 2016

Contents
Introduction . 1
System Requirements . 1
Distribution Contents . 2
Support . 2
Installing the ThreadSafe Command Line Interface . 2
License Key . 2
Concepts . 3
Tasks . 4
Suppressing Findings . 7
Using @GuardedBy annotations . 9
Reference . 11

Introduction

The ThreadSafe Command Line Interface enables Java code to be analyzed via the command line. Results for each
analysis are shown in generated HTML reports. ThreadSafe CLI provides:

• A set of concurrency related analyses.

• Generated HTML reports showing analysis findings in the source code.

• Full rule documentation via the HTML report.

System Requirements

ThreadSafe supports the following platforms:

• Windows XP or later

• Mac OS X 10.6 or later

- 1 -

c© Contemplate Ltd 2016

Proprietary content property of Contemplate Ltd. No copying, distribution
or other use without prior written permission of Contemplate Ltd.

Contemplate
T H I N K I N G A B O U T S O F T W A R E

• Linux (glibc 2.3 or later)

The software requirements include:

• Java SE 6 Update 10 or later

ThreadSafe does not require any special privileges to run. It can be installed in a normal user account or on a shared
file system.

Distribution Contents

The software is distributed in a zip file. This should be extracted to a local directory on your ma-
chine. The distribution includes the following contents organized in an installation directory named
ThreadSafe-CLI-<version>:

Documentation This directory contains this document, an example configuration file and the ThreadSafe license
terms.

lib This directory contains third-party libraries and other dependencies used by this software.

Licenses This directory contains license agreements for third party libraries that are used by and included with
this software.

threadsafe.jar This file is the command line interface jar archive which is used to run analyses and produce
HTML reports.

threadsafe.properties This is the global configuration file of the command line interface.

Support

If you have any questions or comments, please contact us at support@contemplateltd.com.

Installing the ThreadSafe Command Line Interface

To install ThreadSafe, extract the contents of the distribution to the filesystem. The installation directory can be
renamed if desired.

Ensure that the path to the Java executable has been added to the operating system’s PATH environment variable.
Instructions on how to do this should be available with the operating system.

To verify that the Java executable has been added, run the following command to print the Java version and check
that it satisfies the system requirements:

java -version

The installation can be tested by printing the ThreadSafe help message with the following command:

java -jar <installation-directory>/threadsafe.jar -h

- 2 -

c© Contemplate Ltd 2016

Proprietary content property of Contemplate Ltd. No copying, distribution
or other use without prior written permission of Contemplate Ltd.

mailto:support@contemplateltd.com

Contemplate
T H I N K I N G A B O U T S O F T W A R E

License Key

After installation, a license key must be configured before any analyses can be run. If you do not have a valid
license key, please contact sales@contemplateltd.com.

To configure the license key:

1. Open the threadsafe.properties file in the installation directory with a text editor.

2. Set the value of the licenseKey property using copy and paste.

3. Save the changes.

Concepts

Rules

A rule is a description of a specific pattern of code that may lead to software faults. ThreadSafe checks code against
the rules enabled in the rule configuration and creates findings for each violation found.

All rules have an associated name, category (e.g. Locking and Collections) and severity. Some rules have additional
parameters. Rules can be enabled, disabled and have their parameters changed using rule configuration files (see
Rule Configuration).

Full rule documentation is available in the HTML report. It can be accessed while investigating a finding by clicking
the Rule description link from the Detail View.

Findings

A finding is a description of a rule violation. Findings appear in the Findings View once analysis completes.

There may be multiple locations in the source code associated with a finding. Each finding has a primary location
which identifies the main location of the violation. This may be a particular line of code such as a field declaration
in a class. The HTML report provides links to primary locations. These are the first (uppermost) entries from the
link list in the Detail View. In addition, the Source Code View initially sets focus on primary locations, highlighting
them with a dark blue color.

Findings may also have additional locations. These provide more information which helps explain the violation.
For example, additional locations may show where a field is read or written to, or where a lock is taken. The
HTML report provides links to additional locations. These are all the links from the link list in the Detail View
apart from the first (uppermost) one. The Source Code View initially highlights additional locations with a light
blue color.

Severities

ThreadSafe defines the following severity levels for findings:

- 3 -

c© Contemplate Ltd 2016

Proprietary content property of Contemplate Ltd. No copying, distribution
or other use without prior written permission of Contemplate Ltd.

mailto:sales@contemplateltd.com

Contemplate
T H I N K I N G A B O U T S O F T W A R E

• Blocker - Blocking issues that must not be allowed into production code.

• Critical - Critical issues that should be addressed urgently.

• Major - Major issues that should be addressed eventually.

• Minor - Minor issues that are not a significant risk.

• Info - Suggestions and related information.

Tasks

Compile Java Sources with Debugging Information

Java code to be analyzed should be saved and compiled before running ThreadSafe. ThreadSafe requires sources to
be compiled with debugging information in the bytecode, including file names and line numbers.

A simple way to check that the compiler is configured appropriately is to check that a stack trace thrown by the
application includes the file names and line numbers for classes in the project. If file names and line numbers are
not present, the build tool should be configured as described below.

Apache Ant If the project is built with Ant, users can include debugging information by adding a debug="true"
attribute to the <javac> task element. There is no need to specify the debuglevel attribute but, if it is used, the
value should include the source and lines options.

Apache Maven If the project is built with Maven, then debugging information will be included by default and no
specific configuration is required.

Javac If compiling with javac directly, the -g parameter should be specified on the command line.

Further information should be available in the documentation of the build tool.

Running Analyses

The recommended way to run the ThreadSafe analysis is to create an analysis configuration file (see Configuring
Analyses) named threadsafe-project.properties in the root directory of the project and then run ThreadSafe
from this directory with no arguments.

ThreadSafe uses the Java properties file format for its configuration files. A full description is available in the
java.util.Properties Javadoc API documentation.

An example configuration file is shown below:

projectName=myProject

sources=src/main/java

binaries=target/classes

outputDirectory=threadsafe-html

After the configuration file has been saved, the project can be analyzed by executing the commands:

- 4 -

c© Contemplate Ltd 2016

Proprietary content property of Contemplate Ltd. No copying, distribution
or other use without prior written permission of Contemplate Ltd.

http://docs.oracle.com/javase/6/docs/api/java/util/Properties.html#load%28java.io.Reader%29

Contemplate
T H I N K I N G A B O U T S O F T W A R E

cd <project-root-directory>

java -jar <installation-directory>/threadsafe.jar

The path to the configuration file can be specified using the -c option. This may be useful if the configuration file is
not in the project directory. Additionally, all properties in the configuration files can be overridden with command
line arguments, using the -D option.

For example, the command below allows running analysis when the configuration files are stored in a centralized
directory:

java -jar <installation-directory>/threadsafe.jar \

-c <analysis-configs-directory>/project-config.properties \

-DbaseDirectory=<full-path-to-project-root-directory>

When ThreadSafe configuration is stored outside the project directory, it may be preferable to to specify the
baseDirectory property inside the configuration file (in this case project-config.properties).

Investigating Results

ThreadSafe generates an HTML report after running the analysis. This report can be viewed by opening the
index.html file in the output directory with a web browser.

Findings appear as a tree in the Findings View. They can be organized in groups using the Group by drop-down.
Additional information regarding a finding can be seen by selecting it in the list. Details appear in the Detail View
and relevant code is highlighted in the Source Code View.

Accesses View The Accesses View allows detailed investigation of findings that involve locking. It is designed to
make spotting problems with locking strategies easy. You can quickly open this view for a particular finding from
the Detail View by clicking on the Accesses link.

The view presents a table. It lists source code locations that are accesses to the field referenced by the finding. The
table shows which guards are held for each field access. Clicking a link in the leftmost column focuses the Source
Code View on the location in the code.

You can find more about how to use this view from the Accesses View section.

Finding Locations Each finding refers to a primary and possibly to one or more additional locations in the source
code. The Detail View of the ThreadSafe View provides links to these locations. Clicking a link opens relevant
code in the Source Code View and highlights the position with a dark blue color.

The Source Code View displays finding locations in a source file by highlighting the corresponding lines. Pri-
mary locations and the line currently on focus are highlighted with a dark blue color and additional locations are
highlighted with a light blue color.

- 5 -

c© Contemplate Ltd 2016

Proprietary content property of Contemplate Ltd. No copying, distribution
or other use without prior written permission of Contemplate Ltd.

Contemplate
T H I N K I N G A B O U T S O F T W A R E

Configuring Analyses

The ThreadSafe Command Line Interface is configured using properties defined in properties files or passed on the
command line. There are three precedence levels.

Properties defined in the global configuration file have the lowest precedence. Project configuration files have
a higher precedence. Configuration options specified as command line arguments have the highest precedence.
Properties with higher precedence override properties with lower precedence.

The sections below describe the properties commonly defined at each level of precedence.

Global Configuration Properties in the global configuration file apply to all analyses, unless otherwise overrid-
den. This file must be located in the installation directory under the name threadsafe.properties. The table
below describes the properties commonly defined in it.

Property Type Description

Mandatory:

licenseKey String The license key.

Project Configuration The project configuration file is used to define properties that apply to a single project
only, such as the project classpath.

This file is normally called threadsafe-project.properties, and saved in the project root directory. Alterna-
tively, the -c command line parameter can be used to specify a different path.

The table below describes the properties commonly defined in this file.

Property Type Description

Mandatory:

binaries Paths Directories/JARs/ZIPs containing bytecode to be analyzed.

sources Paths Directories containing sources of code to be analyzed.

outputDirectory Path Output directory for HTML report.

Optional:

baseDirectory Path Project root directory.

libraries Paths Directories/JARs/ZIPs required on the project classpath.

projectName String Project name to show in the report.

rulesFile Path Rule configuration file.

- 6 -

c© Contemplate Ltd 2016

Proprietary content property of Contemplate Ltd. No copying, distribution
or other use without prior written permission of Contemplate Ltd.

Contemplate
T H I N K I N G A B O U T S O F T W A R E

Paths may be absolute or relative, and should be comma-separated when more than one is specified in a configura-
tion value.

Note: Windows users should use ’/’ as a path delimiter because the backslash (’\’) is the escape character.

Relative paths in the configuration are considered relative to:

1. baseDirectory if set, or

2. the directory of the project configuration file if used, or

3. the current working directory.

If baseDirectory is a relative path, is considered relative to (2) or (3) above, in the specified order.

Multi-module project configurations can be created by appending all binary, source and relevant library paths for
each module to the binaries, sources and libraries configuration properties. ThreadSafe will then analyze the
modules together and create a combined report. Support for specifying individual module configurations separately
is planned for a future release.

Command Line Properties Additional properties can be passed on the command line using the -Dkey=value
option. These have the highest precedence and can be used to override configuration from the global or analysis-
specific configuration file.

Rule Configuration By default, ThreadSafe uses all rules with a default configuration.

Rules can be turned on and off and rule parameters can be changed by using rule configuration files. The ThreadSafe
Eclipse plug-in can be used to generate such files by exporting the rule configuration in the ThreadSafe preferences
page.

To run ThreadSafe with a configuration that differs from the default, the rulesFile configuration property can be
used to specify the path of a rule configuration file.

Suppressing Findings

It may be useful to suppress a finding if code review deems that the code is correct, or that it requires no further
attention. Findings that are suppressed are no longer shown in results.

Marking regions of Java source code for which findings should be ignored is done by adding comments. These are
specialized comments and must be of the form described below. This feature may be familiar to users who have
used suppression comments in Checkstyle.

Using comments to suppress findings

Findings can be suppressed by adding the following comments to the code:

• Add a comment like this at the start of the section where findings should be suppressed:

- 7 -

c© Contemplate Ltd 2016

Proprietary content property of Contemplate Ltd. No copying, distribution
or other use without prior written permission of Contemplate Ltd.

http://checkstyle.sourceforge.net/config.html#SuppressionCommentFilter

Contemplate
T H I N K I N G A B O U T S O F T W A R E

// ThreadSafe: OFF

• Add a comment like this at the end of the section where findings should be suppressed:

// ThreadSafe: ON

Example: The code below checks if a lock has been taken before attempting to acquire the lock. ThreadSafe warns
about this code and suggests that the calls to isLocked() and lock() should be replaced with a single call to
tryLock().

if (!lock.isLocked()) {
lock.lock();

try {
x = x + 1;

} finally {
lock.unlock();

}

}

The finding can be suppressed by adding comments as follows:

// ThreadSafe: OFF

if (!lock.isLocked()) {
lock.lock();

try {
x = x + 1;

} finally {
lock.unlock();

}

}

// ThreadSafe: ON

Findings with multiple locations

The code shown in the following example is identified as containing inconsistent synchronization; the field x is
accessed without any synchronization in the get()method. However, the other accesses to x occur in synchronized
methods, suggesting that the lack of synchronization in get() may be a bug.

- 8 -

c© Contemplate Ltd 2016

Proprietary content property of Contemplate Ltd. No copying, distribution
or other use without prior written permission of Contemplate Ltd.

Contemplate
T H I N K I N G A B O U T S O F T W A R E

Figure 1: A finding with multiple locations.

ThreadSafe associates this finding with locations in the code. The line where the field x is declared is considered a
primary location. Lines in the code indicating accesses to that field are considered additional locations.

To suppress this particular finding, it is sufficient to add comments only to its primary location.

Adding suppression comments to surround the primary location suppresses the finding and hides it from the results.
The screenshot below shows the result of adding suppression comments to the code shown above and running
ThreadSafe again. The finding is no longer shown.

Figure 2: A finding that has been suppressed using comment markers.

- 9 -

c© Contemplate Ltd 2016

Proprietary content property of Contemplate Ltd. No copying, distribution
or other use without prior written permission of Contemplate Ltd.

Contemplate
T H I N K I N G A B O U T S O F T W A R E

Using @GuardedBy annotations

@GuardedBy annotations are a way of documenting the locks that must be used when accessing fields. If field
declarations are decorated with @GuardedBy annotations, ThreadSafe can check that the appropriate locks are
always acquired before any access to the annotated field is performed. This provides a more predictable way to
ensure correct synchronization than ThreadSafe’s heuristic based inconsistent synchronization analysis.

Here, we give a short introduction on how to use the @GuardedBy annotation in your code, and document the exact
syntax that ThreadSafe supports. For more information on how to use @GuardedBy annotations effectively, please
consult the book Java Concurrency in Practice by Goetz et al.

Including @GuardedBy in your project

In order to use the @GuardedBy annotation in your code, you must first include the necessary jar as a dependency for
your project. There are two standard definitions of the @GuardedBy annotation in common use. The two definitions
are equivalent, but are defined in different packages. ThreadSafe supports both.

• The newer, recommended, definition is in the javax.annotation.concurrent package, as defined by
JSR305. The Maven Central Repository provides an example of how to add the jar as a project dependency
for some popular build systems. See the ‘Dependency Information’ section of the ‘Artifact Details’ page. The
jar can also be downloaded from the same page.

• The older definition is in the package net.jcip.annotations, named after the book Java Concurrency
in Practice (JCIP). The Maven Central Repository provides an example of how to add the jar as a project
dependency for some popular build systems. See the ‘Dependency Information’ section of the ‘Artifact
Details’ page. The jar can also be downloaded from the same page.

A small example

The following code demonstrates the use of the @GuardedBy annotation to document the assumption that all ac-
cesses to the field counter are synchronized by locking on the containing object (referred to as "this").

import javax.annotation.concurrent.GuardedBy;

public class Counter {

@GuardedBy("this")

private int counter;

public synchronized void increment() {

counter++;

}

public synchronized int getValue() {

return counter;

}

- 10 -

c© Contemplate Ltd 2016

Proprietary content property of Contemplate Ltd. No copying, distribution
or other use without prior written permission of Contemplate Ltd.

https://jcp.org/en/jsr/detail?id=305
http://search.maven.org/#artifactdetails%7Ccom.google.code.findbugs%7Cjsr305%7C3.0.0%7Cjar
http://search.maven.org/#artifactdetails%7Cnet.jcip%7Cjcip-annotations%7C1.0%7Cjar
http://search.maven.org/#artifactdetails%7Cnet.jcip%7Cjcip-annotations%7C1.0%7Cjar

Contemplate
T H I N K I N G A B O U T S O F T W A R E

}

In this class, the increment() and getValue()methods are both synchronized, so the locking strategy specified
by the @GuardedBy annotation has been respected. ThreadSafe will accordingly not report any violations of the
@GuardedBy annotation in this code snippet.

If either of the methods had not been declared as synchronized, then ThreadSafe would report that the counter
field’s @GuardedBy annotation has been violated, and will list the locations where the field has been accessed with
and without synchronization.

Syntax reference

The list below shows the valid forms for the @GuardedBy parameter that ThreadSafe understands:

• this: the annotated field is guarded by a lock held on the enclosing instance.

• fieldName and "this.fieldName": the annotated field is guarded by a lock held on the object referenced
by the field fieldName in the same instance. If fieldName is not a field of reference type (i.e., it is of
primitive type: int, long, float, or double), then the annotation is invalid. If fieldName is of a type
that is an implementation of the java.util.concurrent.locks.Lock interface, then it is expected that
the annotated field is guarded by the use of fieldName.lock() instead of synchronized blocks.

• C.class: the annotated field is guarded by a lock held on the class C.

• C.fieldName: the annotated field is guarded by a lock held on the object referenced by the static field
fieldName. If fieldName is not a field of reference type (i.e., it is of primitive type: int, long, float,
or double), then the annotation is invalid. If fieldName is of a type that is an implementation of the
java.util.concurrent.locks.Lock interface, then it is expected that the annotated field is guarded by
the use of fieldName.lock() instead of synchronized blocks.

Reference

The Toolbar

The toolbar provides controls which allow:

• Link navigation between the different parts of the report.

– Summary - shows Summary page, collapses findings tree.

– Findings - shows Findings View.

– Packages - shows Package View.

• Grouping of findings via the Group by drop-down. Grouping is done by:

– Rule type

– Rule category

- 11 -

c© Contemplate Ltd 2016

Proprietary content property of Contemplate Ltd. No copying, distribution
or other use without prior written permission of Contemplate Ltd.

Contemplate
T H I N K I N G A B O U T S O F T W A R E

– Rule severity

– Resource (i.e. .java source files)

Summary Page

The summary page serves as an overview of the analysis report. It appears when the analysis report is opened for
the first time or when the Summary link is clicked.

The summary page includes the following information:

• Project named as defined in the analysis configuration.

• ThreadSafe version used for the analysis.

• Date and time of the analysis.

• Total number of findings.

Findings View

The ThreadSafe Findings View displays findings in a tree. It appears on the left hand side of the HTML report.
Selecting a finding from the tree opens detailed information about that finding in the Detail View and highlights
relevant source code in the Source Code View. Findings in the tree have icons indicating severity.

- 12 -

c© Contemplate Ltd 2016

Proprietary content property of Contemplate Ltd. No copying, distribution
or other use without prior written permission of Contemplate Ltd.

Contemplate
T H I N K I N G A B O U T S O F T W A R E

Figure 3: Findings View

Detail View

The Detail View shows information about the currently selected finding. This includes a short description of the
violated rule as well as a list of location links. Clicking these will open the respective finding locations in the Source
Code View.

The Accesses link shown below the location links opens the Accesses View in a panel below the Source Code
View.

The Rule description link shown below the location links opens the rule documentation in a panel below the
Source Code View.

- 13 -

c© Contemplate Ltd 2016

Proprietary content property of Contemplate Ltd. No copying, distribution
or other use without prior written permission of Contemplate Ltd.

Contemplate
T H I N K I N G A B O U T S O F T W A R E

Figure 4: Detail View

Package View

The Package View allows browsing findings by navigating through source code packages and classes. The view is
split in two - the Package View and the Class View. Clicking on a package in the Package View lists all its source
files in the Class View. Clicking on a source file displays the source code in the Source Code View, highlighting all
finding locations.

Source Code View

The Source Code View (see Figure 1) appears when a findings has been selected from the Findings View or a
class has been selected from the Package View. It helps browsing findings by highlighting them in the source
code.

The view features:

• Finding location highlighting

• Java syntax highlighting

• Cross-reference links

• Line numbering

- 14 -

c© Contemplate Ltd 2016

Proprietary content property of Contemplate Ltd. No copying, distribution
or other use without prior written permission of Contemplate Ltd.

Contemplate
T H I N K I N G A B O U T S O F T W A R E

Accesses View

The Accesses View shows all the potentially concurrent accesses to a shared field and how these are guarded by
locks. It can be opened from the Detail View by clicking on the Accesses link.

The Accesses View is available for the following finding types:

• Inconsistent Synchronization

• Inconsistent Collection Synchronization

• Mixed Synchronization

• Mixed Collection Synchronization

• Thread-safe collection consistently guarded

• Unsynchronized write to field from asynchronous callback

The Accesses View will open showing accesses to the field referenced by the finding:

Figure 5: Accesses View

In this case, accesses to the field InstanceGuards.shared are shown. The field name is displayed at the top of
the view.

A guard represents the relationship between a field access and a lock that is held during that access. This relationship
is independent of how the accessed object and the lock are referenced. For example, in the following code, the ac-
cesses in the getShared() and staticGetShared()methods have the same relationship between the field and the
lock: both access a field on a runtime object obj while holding a lock on the runtime object obj.lock. It doesn’t mat-
ter that in the getShared() method, obj is referenced through the variable this and in the staticGetShared()
method through the variable instGuards. Because the relationship between the accessed object and the lock is the
same in each case, both accesses have the same guard: InstanceGuards.this.lock.

1 class InstanceGuards {
2

3 private final Object lock = new Object();
4

5 private Object shared;
6

7 public synchronized void setShared(Object value) {
8 this.shared = value; // Guarded by InstanceGuards.this
9 }

- 15 -

c© Contemplate Ltd 2016

Proprietary content property of Contemplate Ltd. No copying, distribution
or other use without prior written permission of Contemplate Ltd.

Contemplate
T H I N K I N G A B O U T S O F T W A R E

10

11 public Object getShared() {
12 synchronized (lock) {
13 return shared; // Guarded by InstanceGuards.this.lock
14 }

15 }

16

17 public static Object staticGetShared(InstanceGuards instGuards) {
18 synchronized (instGuards.lock) {
19 return instGuards.shared; // Guarded by InstanceGuards.this.lock
20 }

21 }

22 }

The Accesses View shows the accesses and guards for a finding’s field, and is designed to make it easy to spot
problems with locking strategies.

The view gives a table with a row for each access and a column for each guard. The first column provides access
location information in the form of a link: source file and line number. A row shows which guards are Always Held,
Maybe Held or Not Held for an access. If multiple accesses share the same Always Held guard, then ThreadSafe
considers these accesses protected by a common lock.

A guard is Always Held for an access if every path leading to that access must take the guard lock. It is Maybe Held
if the access occurs in a private or protected method, and that method is called both with and without the guard lock
held. It is Not Held if there is no guarantee the guard lock will ever be held during the access.

Accesses View in Action

The following examples show how the Accesses View can help when diagnosing locking problems found by Thread-
Safe.

Inconsistent Synchronization Inconsistent Synchronization findings report fields that are mostly, but not always,
accessed while holding a common lock. The Accesses View shows which accesses are not guarded by a lock, and
which lock has been used to guard the other accesses:

1 class Inconsistent {
2

3 private Object shared;
4

5 public synchronized void set(Object value) {
6 shared = value; // guarded access

7 }

8

9 public synchronized void unset() {
10 shared = null; // guarded access
11 }

- 16 -

c© Contemplate Ltd 2016

Proprietary content property of Contemplate Ltd. No copying, distribution
or other use without prior written permission of Contemplate Ltd.

Contemplate
T H I N K I N G A B O U T S O F T W A R E

12

13 public Object get() {
14 return shared; // unguarded access
15 }

16

17 }

ThreadSafe will report an Inconsistent Synchronization finding on this code. The access to the shared field in
get() is not synchronized while the rest are. The Accesses View shows the following:

Figure 6: Inconsistent guards

The guard Inconsistent.this is marked as Always Held in the set() and unset() methods and Not Held in
the get() method . The unguarded access in get() immediately shows where the problem is. Clicking the access
link in the leftmost column will focus the Source Code View on the location in the code.

Mixed Synchronization The Accesses View is especially useful for determining the cause of Mixed Synchro-
nization findings, as shown from the InstanceGuards example in the screenshot below:

ThreadSafe will report a Mixed Synchronization finding on the InstanceGuards code above. The access to shared
is guarded by two different locks: the InstanceGuards instance in the set() method and the lock object in the
getShared() and staticGetShared() methods.

Figure 7: Mixed Guards

From this we can see that accesses in the getShared() and staticGetShared() methods are guarded with
InstanceGuards.this.lock, whereas the access in setShared() is guarded with InstanceGuards.this. To
fix the problem, setShared() should synchronize on InstanceGuards.this.lock as shown below:

public void setShared(Object value) {
synchronized (lock) {

- 17 -

c© Contemplate Ltd 2016

Proprietary content property of Contemplate Ltd. No copying, distribution
or other use without prior written permission of Contemplate Ltd.

Contemplate
T H I N K I N G A B O U T S O F T W A R E

this.shared = value;
}

}

Maybe Held Guard A common source of synchronization errors occurs when a method is sometimes invoked
with a lock held and sometimes without. This is demonstrated by the following code:

1 class MaybeHeld {
2

3 private Object shared;
4

5 public synchronized Object get() {
6 return shared; // Guarded by MaybeHeld.this
7 }

8

9 public synchronized void set(Object value) {
10 privateSet(value); // Call privateSet() while holding MaybeHeld.this

11 }

12

13 public void setLater(long delay, final Object value) {
14 Timer t = new Timer();
15 t.schedule(new TimerTask() {
16 @Override

17 public synchronized void run() {
18 privateSet(value); // Call privateSet() while holding MaybeHeld$1.this

19 }

20 }, delay);

21 }

22

23 private void privateSet(Object value) {
24 shared = value; // Guarded by either MaybeHeld.this or MaybeHeld$1.this

25 }

26

27 }

This code is similar to the mixed synchronization example above, except that the set() and setLater() methods
call a private setter, privateSet() instead of writing to the shared field directly.

The set()method calls privateSet()with a guard held on MaybeHeld.this, but the run()method in the inner
class calls privateSet() with a guard held on MaybeHeld$1.this. In this case, the Accesses View shows both
guards as being Maybe Held for the access in privateSet():

- 18 -

c© Contemplate Ltd 2016

Proprietary content property of Contemplate Ltd. No copying, distribution
or other use without prior written permission of Contemplate Ltd.

Contemplate
T H I N K I N G A B O U T S O F T W A R E

Figure 8: Sometimes synchronized access

As no guard is Always Held in the method privateSet(), the access is considered unguarded and an error icon is
shown in the second row.

Guard Types

ThreadSafe recognizes several different types of guards. These are described here.

Instance Guards A guard is an instance guard if the lock object is relative to the accessed object. Consider the
following code again:

1 class InstanceGuards {
2

3 private final Object lock = new Object();
4

5 private Object shared;
6

7 public synchronized void setShared(Object value) {
8 this.shared = value; // Guarded by InstanceGuards.this
9 }

10

11 public Object getShared() {
12 synchronized (lock) {
13 return shared; // Guarded by InstanceGuards.this.lock
14 }

15 }

16

17 public static Object staticGetShared(InstanceGuards instGuards) {
18 synchronized (instGuards.lock) {
19 return instGuards.shared; // Guarded by InstanceGuards.this.lock
20 }

21 }

22 }

The simplest instance guard is a lock on the accessed object, as in the setShared() method in the example above.
The field this.shared is written with a lock held on this. This is shown in the Accesses View as guarded by
InstanceGuards.this:

- 19 -

c© Contemplate Ltd 2016

Proprietary content property of Contemplate Ltd. No copying, distribution
or other use without prior written permission of Contemplate Ltd.

Contemplate
T H I N K I N G A B O U T S O F T W A R E

Figure 9: Instance Guards

An Instance Guard can also refer to a lock field, as with the getShared() and staticGetShared() methods. In
the getShared() method, this.shared is read with a lock held on this.lock. In the staticGetShared()
method, instGuards.shared is read with a lock held on instGuards.shared.lock. Both these ac-
cessed object/lock pairs have the same relationship, so the Accesses View shows them both as guarded by
InstanceGuards.this.lock.

Static Guards A guard is a static guard if the lock object is either a static field or a class instance. Consider the
following code:

1 class StaticGuards {
2

3 private static final Object lock = new Object();
4

5 private Object shared;
6

7 public static synchronized Object getShared(StaticGuards sg) {
8 return sg.shared; // Guarded by StaticGuards.class
9 }

10

11 public static void setShared(StaticGuards sg, Object value) {
12 synchronized (lock) {
13 sg.shared = value; // Guarded by StaticGuards.lock

14 }

15 }

16

17 }

The access in the setShared() method is locked using the static field lock. This is labelled in the Accesses View
as StaticGuards.lock:

Figure 10: Static Guards

- 20 -

c© Contemplate Ltd 2016

Proprietary content property of Contemplate Ltd. No copying, distribution
or other use without prior written permission of Contemplate Ltd.

Contemplate
T H I N K I N G A B O U T S O F T W A R E

Note that this differs from a lock held on an instance field, which would be labelled StaticGuards.this.lock.

The getShared() method is marked as both static and synchronized. Thus a lock is acquired on the class
StaticGuards on entry to this method. ThreadSafe infers that the access to the field shared in the getShared()
method is guarded by the lock held on the class, and so reports the guard as StaticGuards.class:

The same effect would be achieved if we had explicitly synchronized on the class literal StaticGuards.class,
like so:

public static Object getShared(StaticGuards sg) {
synchronized (StaticGuards.class) {

return sg.shared;
}

}

Unknown Guards Sometimes ThreadSafe is not able to determine the relationship between the object that is
being accessed and the locks that are held during that access. In such cases, ThreadSafe will report that an unknown
guard is held. These guards are labelled as <unknown> in the Accesses View, as can be seen in the screenshot
below:

Figure 11: Unknown guards

This Accesses View was generated by analysing the following example code with ThreadSafe. A mixed synchro-
nization finding on the field shared is reported. This code demonstrates two cases where the relationship between
the target object of an access and the lock held is unclear.

1 class UnknownGuards {
2

3 private final Object lock = new Object();
4

5 private Object shared;
6

7 public synchronized void copyFrom(UnknownGuards ug) {
8 this.shared = ug.shared;
9 }

10

11 public void copyTo(UnknownGuards ug) {
12 synchronized (lock) {

- 21 -

c© Contemplate Ltd 2016

Proprietary content property of Contemplate Ltd. No copying, distribution
or other use without prior written permission of Contemplate Ltd.

Contemplate
T H I N K I N G A B O U T S O F T W A R E

13 ug.shared = this.shared;
14 }

15 }

16

17 }

This class contains two methods; copyFrom() and copyTo(). In both methods the field shared has been po-
tentially accessed on two objects: one referenced through this, and one referenced through the ug parameter.
(ThreadSafe does not have enough information to determine for sure whether or not these two variables actually
reference the same object).

In the method copyFrom(), a lock is acquired on the object referenced by this. For the access to this.shared,
the guard is UnknownGuards.this, as indicated by the Always Held in the second row in the Accesses View
screenshot above. For the field access ug.shared, there is no obvious relationship between ug and the lock on
this. Therefore, ThreadSafe reports the inferred guard as <unknown>, as shown in the first row of the Accesses
View.

The case demonstrated in the method copyTo() is similar, except that a lock is held on the object in the field lock
rather than on this. Again, there is no obvious connection between the lock held on this.lock and the field
ug.shared, so an unknown guard is reported.

ThreadSafe will also report <unknown> guards in cases where it has been unsuccessful in tracking references to
objects. A common case where this happens is in code that traverses linked data structures. Fortunately, such
cases are rare, as most code uses standard library data structures like java.util.LinkedList rather than custom
implementations.

- 22 -

c© Contemplate Ltd 2016

Proprietary content property of Contemplate Ltd. No copying, distribution
or other use without prior written permission of Contemplate Ltd.

	Introduction
	System Requirements
	Distribution Contents
	Support
	Installing the ThreadSafe Command Line Interface
	License Key
	Concepts
	Tasks
	Suppressing Findings
	Using @GuardedBy annotations
	Reference

